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ABSTRACT

We-vtudy- granular jumps generated in the gravity flow of granular

materials down an inclined plane. The equations governing the granular flow

are reduced to a sequence of boundary value problems of linear ordinary

differential equations by means of an asymptotic method. Their solutions are

used to determine the Burgers equation, which possesses a progressive wave

solution to describe a smooth granular jump. The wave speed and a criterion

for the stability of the granular jump are also obtained.
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SIGNIFICANCE AND EXPLANATION

Problems of flow of granular materials have attracted much attention

recently because of their importance in industrial applications and

geophysical situations. It is observed in laboratory tests that a granular

jump may appear in the gravity flow of a granular material down an inclined

plane. The granular jump may be considered as a wave front moving with

constant velocity on the free surface of the granular material and connecting

one uniform depth to another. The main contribution of this report is to

develop an asymptotic method, which can describe the speed, wave profile and

stability of the granular jump.
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GRANULAR JUMPS DOWN AN INCLINED PLANE

M. C. Shen

1. Introduction

In recent years there has been much interest in the study of the gravity

flow of granular materials. Needless to say, granular flow problems occur

frequently in industry as well as in nature such as handling of grains and

sands, snow avalanches and rock falls. It is reported in laboratory tests

(Savage, 1979) that smooth granular jumps may be observed when granular

materials are moving down an inclined chute. As seen from loose snow

avalanche or earth slide in nature, such a granular jump also seems to

appear. On the other hand, since Goodman and Cowin (1972) proposed their

continuum theory for flow of granular materials, only a few analytical results

based upon their equations have been found, for example, steady state

solutions by Goodman and Cowin (1971), and solutions of the linearized

equations by Nunziato and Walsh (1977). The main purpose of this report,

therefore, is to develop an asymptotic method for the study of the time-

dependent granular flow under gravity down an inclined plane, which provides a

means to describe the development of a smooth granular jump. Some results

concerning granular jumps have been obtained by Morrison and Richmond (1976),

and Savage (1979). However, their approach is based upon algebraic

considerations of conservation laws for hydraulic jumps.

Department of Mathematics and the Mathematics Research Center, University of
Wisconsin, Madison, WI 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
the National Science Foundation under Grant No. MCS 800-1960.



In this report we adopt the equations formulated by Goodman and Cowin

(1972) for the so-called cohesionless Coulomb granular materill and our

approach used here is essentially an extension of the method we developed in a

previous report (Shen, 1983) for the compressible viscous flow down an

inclined channel. We briefly explain the method as follows. Assume that the

granular flow down an inclined plane is two dimensional. We choose a

coordinate system moving with the wave front of a granular jump so that the

horizontal axis is parallel to the plane. A small parameter e as the ratio

of the vertical length scale H to the horizontal length scale L is

introduced. We assume that the vertical velocity component is much smaller

than the horizontal velocity component, and consider the granular flow for

large time. Then we use e to stretch various variables non-dimenionalized

by appropriate units so that these assumptions are met. The solution of the

governing equations is expanded in an asymptotic series in integral powers of

E, and the equations for the successive approximations determine the wave

speed and an evolution equation for the free surface, which is the well-known

Burgers equation. The signs of some coefficients in the Burgers equation

determine whether the equation is ill-posed and provide a criterion for the

stability of the flow.

The governing equations used here involve four material constants; two of

them are related to the equilibrium stress and the other two appear in the

dynamic stress. We first develop a general method in which all the material

constants are assumed to be finite. However, the calculations of the wave

speed and the coefficients in the Burgers equations are rather prohibitive.

To simplify the derivations, we shall consider a special case, that is, we

choose one of the material constants to be large in comparison with the

others. In this case the equilibrium solution reduces to the one for the
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incompressible viscous flow down an inclined plane, and the wave speed and the

coefficients in the Burgers equation can be explicitly expressed in terms of

the remaining constants. We also note that many other constitutive equations

have been proposed for granular materials lately (Cowin and Satake, 19781

Savage, 19791 Nunziato, Passman and Thomas, 1980; Savage and Jeffrey, 1981;

Sayed and Savage, 1983). Most of them are generalizations of the original

formulation due to Goodman and Cowin (1972). The basic ideas developed here

could also apply to these more general cases.

we formulate the problem for the general case in Section 2. The wave

speed and the Burgers equation are derived in Section 3. In Section 4, we

consider the special case. In Section 5, we define the criterion of

stability, derive an expression for the wave profile of a granular jump and

present some problems for further study.

-3-
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2. Formulation

We consider a cohesionless Coulomb granular material flowing down a rough

inclined plane so that we may impose the no-slip condition there. The flow is

assumed to be two dimensional and a .-oordinate system moving at a speed a*

in the x-direction is chosen so that the x*-axis is parallel to the plane and

the y'-axis is positive upward (Figure I). The governing equations are the

following:

V(v') - 0 , (1)

yv*(q *+ q* * V*q*) = V * T* + Yv'q , (2)

subject to the boundary conditions:

At the free surface E* - y* - n*(x*,t*) = 0 ,

T* , (3)

* n* o , (4)

n + U*. v* - 0 (5)

at the rough rigid plane,

q* -0 , V* (6)
p

Here V* (/ 3x*,3 /3y*) - (a/xi,3/3x), V* is the volume distribution

function, 1' is the mass density assumed to be constant, q - (u,v*)

(u ,u;) is the velocity of the flow, T* is the stress tensor defined by

T? . -B*(V*) 2 + a*(V*v*)2 + 2%*v*(V*)2 v*]S - 2Q*v* v** +ij iJ xtx*

ij+ 2J1cJ ,

! -(u+ u-.,)/2

g - (g sin 8, -g cos e) is the constant gravitational acceleration, 8 is

the angle of inclination of the plane to the horizontal assumed to be greater

than the angle of internal friction but less than w/2, T* is the equi-

librated stress vector given by h . 2aeVV, and n* is the vector
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Figure 1. Coordinate system for the granular flow



(nx.,-1) normal to the free surface. For simplicity, we assume that a*,
x

0. p* and v ; are positive constants, and A* is also constant but

satisfies 3X* + 2U* ) 0.

We introduce the folloving nondimensional variables:

V V/V* , (uv) - (u*,cv*)(gH) - / 2  ,
p

-2 -1/2-1-
t =  t*H/g)-  (x,y) = (C x*,y*)H

-1 -1
O = 0*(gH) - , 8 = 1*(yv*gH)

p

3-1 =(u)(V()1/2 1
a = *(YAgH) - , (Aij) - (A*,*IYvgHI H)

c = H/L .

In terms of them, (1) to (6) become

ev + (vu) + (Vv) = 0 , (7)S x y

CV(c2ut + uu + vu ) = -2cvV + 2av(c2 v + v )x y X xx yy x

(8)

+ (A + )C 2(u + v ) + (C 2 u + u ) + V sin 6
x y x xx yy

2 2
C V(v t + uv + vv ) = -26vv + 2av(£ v + v )

x y y xx yyy
(9)

+ c ( ) + v) + ) + (eCv + v ) - v o

X x y x yat y= nx y)

2 22

-2v(2 V + v + 2a(v ) 2 A -(u + v - 2xv = 0
x y x x x y

- (1)x x y
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3. Wave speed and the Burgers equation

Assume that u, v. V and n possess an asymptotic expansion of the form

2
-=0+ C1 + 2' (15)

Without loss of generality, we may assume 0 = C0 + caI . Substitution of (15)

in (7) to (14) yields a sequence of equations and boundary conditions for the

successive approximations. The equations for the zeroth approximation are

Iu0  -V 0 sin , (16)

2 av - 20VOy cos 8 (17)

at y = 0,

UOy 0 ,(18)

2 O -o By = 0 , (19)

V =0 ; (20)
oy

at y=-1,

u 0 = -0 0 = 1 (21)

where u0  is assumed to be a function of y only and v0 = no = 0. The

solutions of (16) to (21) for u0  and V 0  can be easily found, and a

discussion of these solutions is given in Goodman and Cowin (1971). Following

them, we define

= (/d) 1/2 and M = cos 8/(20) , (22)

and obtain
-1

V0 = 1 sinh ly

(23)

+ (I - M + I sinh )(1 + cosh 1) (1 + cosh ly) -My ,

u 0  = 4, - a 0

P-1 sin e(-mi-3 (sinh I + sinh ly) + (1-M+Ml-1 sinh t)x
(24)

-1 2 -2 3
(1 + cosh 1)I1(-y )/2 + L (cosh I - cosh ty)] + (M/6 )(l+y

-2+ Mt-2l+y)) - 00.
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For small 1, we may expand V0 and 0 in integral powers of I and

obtain

v 0 : I + t2 [(M/6)y 3 + y2 /4 + (M/6 - 1/4)] +so-so (25)

i0 -I sin 0{(I-y 2)/2 + t 2[(-y 2)(M/12 - 1/8) + (1-y 4)/48

(26)

- M(l+y 5)/1201+.....}•

We see from (25) and (26) that as I + 0, v0, u0  tend to the solutions for an

incompressible viscous flow fown an inclined plane (Landau and Lifshitz,

1959). This result motivates our choice of a as a large parameter in the

next section so that expressions for the wave speed and the coefficients in

the Burgers equation can be greatly simplified. On the other hand, if

t+ a, v tends to a discontinuous solution when M # 1 and becomes zero

at y = 0 (Goodman and Cowin, 1971). Therefore, we shall not study this case

in the sequel.

The equations for the first approximation are

(V uo + v u ) (vv) = 0 , (27)
1 01x 0O1y

-Iy V sin 6 (28)u yy I

atyyy Vly (29)

at y= 0,

Uly + = 0 (30)

a(V0V yy + V yy V) - V V0VI = -a V0 V Oyyy , (31)

V +V 1 =0 (32)
ly Oyy(

Uot 1x - v = 0 (33)

at y = -1,

U1 = -Olt = 0, V, = 0 . (34)

As observed from (28) to (32) and (34), we may express v and u1  as

V1 I rill u? = 4 - '1 (35)

-9-



at y - 0,

(-BVO+2aVOV 0yy)nlx - U(u2 y+Uyn 1 +Uoyyn 2 + Uo I2/ 2 ) - 0

0 0 2y X 2yl y 2 2yy

S(2V V n 2/2 + v2 + 2v v n + 2v o 2 ) + 22(v0 ) n2 + (v
0 2y I 12 0 ly 1 0 2 2r yv0  1 + (V

+ 2v I r 2a(v (V22 + v+ V
Oyy ly 1 0 Oyyyn2 + vOyyyyn lyyy 1 2.

+V (V n2/2 + vy n  + v + vlv + v1(V n + V
Oyy OYY I ly 1 2 1 lyY I Oyyy I ly

(ulx +V ) -2u v 0 

2yly ly

I ~ +V y + V ?22 ,;

nIt + U 02x + Ulqlx + Uoy I Ix - v2 - Vlyrl 0

at y -1,

u 2 = v2 = v 2 = 0

From (17), (19), (24), (35), (36) and (42), we may rewrite

and (53) as follows:

L(u 2  v u 2yy = -V 2 sin e + [v 0 (f0-0)*I + 2Bv 04'1 - 2av

+ v0f 1 oy]Nix •

L v)= V - av = -fO+ )($+

L2 (v2 2aVOv2yyy - (Ov2y [(+1) (lyl+fyy) + yyI

at y = 0,

p(u ) = = (-Bv +2av y)x - (
-/2)n214

12 2 0 (10Y l jY Oyy 

B 2 (v 2 ) 2av0v2yy - 0v V2 =X(-+fly 21fly)nlx

+ {(v + +2 v ) - 2a(v )2/2 - (lii y)/2 + v0)N
0 0y /2 y y l

+ ) + 4, + (V + 40 M 2
lyyy Oyy ly Ilyy 1 Oyyy Iyy I

- 2av0 V0yyy)2 
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(V V ( + Vo/2)n2  p (58)3 2 2y ly OyylI

at y-l,

u 2  " 2 = 0 (59)

It is observed from (54) to (59) that u2  and V 2 can be expressed in the

following forms

2
u 2 2nlx + 3 l + 42 , (60)

v2 2nlx + n + 42 (61)

Here *2 to *4 and *2 to *4 are functions of y and satisfy

L2( i = F i  , i = 2,3,4 , (62)

B 2( G i  , B3 (4i) = H. , at y = 0 , (63)

* = 0 at y -1 ; (64)

LI = I. , j - 2,3,4 (65)

B = JJ at y = 0 , (66)

*j=0 at y-l , (67)

where

F 2 = -(A+u)(*ly + f 1 ) -V f

F. = 0 , 1= 3,4

02 = A(# +f ly) - 2ufly

G = S(V 0 v0  +*2+2v0*1) - 2a((v 0  )2/2- (*1)2/2 + VO(Vy/2

+ 1yy ) + Vyy1y" l1yy + *1( Oyyy + 1yy) ,

G = -2av V
4 - 0 yyy

H3 = -( 41Y+V 0y/2), H, - 0, i = 3,4

12 = -*2 sin 6 + V 040-00)4 + 28V0* 1 - 2uV01yy +

v0 f 1#0y 13 = "*3 sin 8, 14 = "*4 sin e

2

J, = -0 2 + 2ai -0 -u(I + +YY21 "-u0 +  0Voyy' J2 J3 "( 1I +  yyy/ 2  '

-12-



J4 = -U#Oyy

In principle, we can solve (62) to (67) for *. and #,j and in turn u2

and V2 can be determined from (60), (61). Now we are in a position to

determine the Burgers equation. We integrate (46) with respect to y from

y = -1 to y 0 0 and make use of (18), (33) to (35), (52) to (53), (60) and

(61), to obtain

-1 *1 dy n t + I°(*211x + *3I + 42)( ) + *( - )

+ V 0 (*2rx + 3n2y 4+ * (0)[*0(0)- I1n (68)

+ n lt + (*00)n 2x + (* 'll-l)nx + -fly(0)ql x M 0

Note that the coefficient of n2 vanishes because of (45). By rearranging
2

the terms, we finally obtain the Burgers equation

MonIt + MInlx + ml2l = m3 1x x  , (69)

Which is our main result. Here

mo fol I y + 1 m 0 m-1 *1 dy + 1 , m1 =-'m

i 2  2 J01[$3($0-(f ) + + VO*3]dY + * (0)[*0(0)-0 ] + 1(0) - fy(0)

3 = - f° -a2 ( 0 -o 0 ) + V 2 ]dy

(69) can be used to study the development of a granular jump.

-13-



4. A special Came

In Section 3, we derived the expressions for the wave speed 00 and the

coefficients for the Burgers equation. However, they depend upon 0, a, B,

and i, and are too complicated for applications. Therefore, as motivated by

the discussion of V0 and #, given in the last Section, we assume a - 1/C

to be a large parameter. Substitution of (15) in (8) to (14) also yields a

sequence of equations and bounding conditions. The equations for the zeroth

approximation are the following:

jiu -V0 sin e (70)

V -O (71)
Oyyy

at y = 0,

UOy 0 , (72)

V , 0 oy (73)

at y = -1,

U0 = -00 ,v 0 =1 . (74)

It is easily seen that

v 1 , (75)

U0) (sin 0/(2j)) (I - y2) - 0 . (76)
0 0

(75) and (76) are solutions for the incompressible viscous flow down an

inclined plane.

The equations for the first approximation are

(VIU 0 + V 0 uI) x + (VIl)y = 0 , (77)

Uy= -2v - V sin e (78)

2v TM cosO , (79)

at y O,

u +u , (80)ly Oyy (0

v = 0 , (81)lyy

-14-
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Yly M 0 (82)

U0ix - v I - 0 (83)

at y--.

uV -aiO, St V 1  (84)

It is found from (78) to (82), and (84) that

V1  (con e/12)( + y ) (85)
2 y5/1

u, - (sin 0 con 0/(2*u)](9/10 - y - y /10) - a1 + (sin 8/p)(1+y)n1  . (86)

We now integrate (77) with respect to y from y = -1 to y and obtain, by

(75), (76), (85) and (86),

V1 W -- 1 ulxdy - -[sin e/(2u)](i+y)2 n (87)

It follows from (76), (83) and (87), that

[sin /(2u) - a0 ]n ix = -sin /(2u)nx

Assume that nix 0 0 and we have

0 0 = sin O/Pa • (88)

Now we proceed to the equations for the second approximation

vit+ (V2 u0 + V1 + V0u 2 ) + (VV + V 0 V2 )y 0 (89)

uou + v Uoy= 2v + uU + v sinG , (90)
O Ix Ifl 2yyx 2yy 2

-2$v +2(V +VV ) - v cos 0 =0 (91)ly 2yyy I iyyy I

at y - 0,
2

(-0+2v )vi - 1u(u +U +U n 2 /2) , (92)lyy lx 2y ly IOyyn2 +u0 yyynI/ 2 )
= 2

2$v, = )v ly - 2(v 2yy-_V V yy+ V yyyn) = 0 * (93)

V + V n1 = 0 * (94)
2y lyyi

nit + U 0 n 2x + uONl + U Oyninx - v2 - vlyn1 = 0 (95)

at y -1,

u2  v2 = V 2 =0 (96)

From (85), (91), (93), (94) and (96), we find that

2 5 (1-y2 )n 1v 2 - (B corn O/24)(-9/10 + y + y /10) + (cos G/4 )(- )n . (97)

-15-



Then from (76). (86), (87), (90), (92), (96) and (97) it is obtained that

2 2 2 2 3 4
u coo 0/2 - sin 2/8,) - By + y coo e/2 + sin 8 (-y /6 + y /12)]nlx

+ coo 0 sin 8 (5-6y 2+y4)n1/48 -sin 011+yln2 + sin ((+y)n (98)
11 9(+~ 2

0 coo 8 sin e(155-189y 2 + 35y 4 + y7)/10080

Making use of (74), (76), (83) to (88) and (95) to (98), we integrate (89)

with respect to y from y = -1 to y = 0 to obtain

n1t + Ml lx + m2=l lx = m3rlx x , (99)

where the coefficient of n 2  vanishes because of (88), and

m1 = cos 9 sin 0/(241) - 1

m2 = sin 8 /0 ,

m 3 = B/2 + cos 0/3 + 23 sin 
2/(24 0U

2 )

-16-
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5. Discussion

It is well known that the Burgers equation as given by (69) or (99) is

ill-posed if the coefficients m0  and m3 are of opposite signs. Therefore,

we may use this result to define the criterion of stability. Since in (69),

m0 and m3 depend upon e, Q, B, A and u, we say a granular Jump is

stable if N and u3 are of same sign i.e. m3/m 0 - f(eaB,,P) > O.

For (99), m I and m3 > 0. Hence a granular jump is always stable in

this sense.

The solution method for the Burgers equation is also well known and we

only give a brief discussion of the steady state solutions of (69) and (99) in

reference to a moving frame. Assume all the coefficients in (69) are not

zero, m3 /m 0 > 0 and nlfnlx + 0 as x + ". It is easily found that

n1 = -(m 1 /m 2 )[1 + tanh(ml(x+c)/(2m
3 ))' "

where c is an arbitrary constant and we require * /33 C 0. Since in (69),

MI = -m 0O3/M0 > 0 and mI/M3 < 0 imply a 1 > 0. Since

a = a0 + ca I > a0, we say the granular Jump moves at a supercritical speed.

If m0/m 2 > 0, then n I + 2m0aI/M 2 > 0 as x + -. In this case nI

decreases smoothly from 2m0/01/M2 to zero as x increases. On the other

hand, if m0/m2 < 0, then n increases smoothly from w0 0 1 /m 2 < 0 to zero

as x increases. For the special case considered in Section 4, m = 1,

M2 > 0, m3 > 0. Hence mI/M3 < 0 implies a1 > cos 9 sin 6 /(24p) > 0 and

the speed of the granular jump is supercritical. Furthermore, m2 > 0

implies that we always have a decreasing granular jump.

Finally we consider some problems for further study. If the free surface

of the granular material is replaced by a rigid plane, then one boundary

condition is lost and we do not have enough boundary conditions to determine

the flow. In fact, in the gravity flow of a granular material between two

vertical plates (Goodman and Cowin, 1971), a slug flow anpears in the central

-17-



part of the vertical channel. It should be of interest to extend the approach

to the study of the granular flow between two parallel inclined planes.

Furthermore, if CO/m3 < 0, an investigation of the ill-posed problem in

certainly of importance. Finally the asymptotic method used here is based

upon the existence of a solution given by (15). A justification of the

method, needless to say, will he a significant contribution to granular flow

problems.
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